Finite element approximation of a fourth order nonlinear degenerate parabolic equation
نویسندگان
چکیده
We consider a fully practical nite element approximation of the fourth order nonlinear degenerate parabolic equation u t + r:(b(u)ru)= 0; where generically b(u) := juj p for any given p 2 (0; 1). An iterative scheme for solving the resulting nonlinear discrete system is analysed. In addition to showing well-posedness of our approximation, we prove convergence in one space dimension. Finally some numerical experiments are presented.
منابع مشابه
Finite element approximation of a sixth order nonlinear degenerate parabolic equation
We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ∇.( b(u)∇∆u), where generically b(u) := |u| for any given γ ∈ (0,∞). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ≤ 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some num...
متن کاملNumerical Methods for Fourth Order Nonlinear Degenerate Diffusion Problems
Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinea...
متن کاملFinite Element Approximation for Degenerate Parabolic Equations. an Application of Nonlinear Semigroup Theory
Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L and L∞, respectively, of the scheme are e...
متن کاملError Estimates for Finite Element Methods for a Wide–angle Parabolic Equation
We consider a model initial– and boundary–value problem for the third– order wide–angle parabolic approximation of underwater acoustics with depth– and range–dependent coefficients. We discretize the problem in the depth variable by the standard Galerkin finite element method and prove optimal–order L–error estimates for the ensuing continuous–in–range semidiscrete approximation. The associated...
متن کاملFinite element approximation of a phase field model for surface diffusion of voids in a stressed solid
We consider a fully practical finite element approximation of the degenerate Cahn–Hilliard equation with elasticity: Find the conserved order parameter, θ(x, t) ∈ [−1, 1], and the displacement field, u(x, t) ∈ R2, such that γ ∂θ ∂t = ∇ . (b(θ)∇ [−γ∆θ + γ−1 Ψ′(θ) + 1 2 c′(θ) C E(u) : E(u)] ) , ∇ . (c(θ) C E(u)) = 0 , subject to an initial condition θ0(·) ∈ [−1, 1] on θ and boundary conditions on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 80 شماره
صفحات -
تاریخ انتشار 1998